Hydrogen Bonding NH···O=C of Barbiturates: The (1:1) Crystal Complex of Urea and 5,5-Diethylbarbituric Acid (Barbital)

BY G. L. GARTLAND* AND B. M. CRAVEN

Department of Crystallography, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.

(Received 12 October 1973; accepted 10 December 1973)

The 1:1 complex of urea and barbital $(CH_4N_2O.C_8H_{12}N_2O_3)$, m.p. 146–150°C, is orthorhombic with space group $P2_12_12_1$. Lattice translations are a = 10.302 (5), b = 10.181 (2), and c = 11.627 (3) Å. The crystal density $(D_m = 1.320 \text{ g cm}^{-3})$ agrees with the calculated density $(D_x = 1.330 \text{ g cm}^{-3})$ for four molecules of each component in the unit cell. The crystal structure has been determined from 1144 integrated intensities measured on a computer-controlled four-circle diffractometer with nickel-filtered Cu K\alpha radiation (absorption coefficient, 9.05 cm⁻¹). The final R index is 0.037. In the crystal structure, barbital molecules hydrogen bond exclusively with urea molecules and vice versa. The NH···O=C hydrogen bonds in which barbital (NH) is donor are stronger (N···O distances 2.78 and 2.80 Å) than those in which it is acceptor (N···O distances 2.95, 3.16 Å). The minor role of urea as the hydrogen-bonding donor in this complex is confirmed by the isomorphous replacement of urea by acetamide. Thus we consider that the association in this complex is essentially that of a hydrogen-bonding acid (barbital) with a hydrogen-bonding base (urea).

Introduction

We have undertaken a series of crystal-structure determinations of molecular complexes of drug-active barbiturates such as barbital (Fig. 1) with other molecules which also contain the -NH-CO- amide grouping. Our particular interests are in the modes of $NH \cdots O = C$ hydrogen bonding, and the hydrogenbonding distances in the crystal structures of the molecular complexes and of the component molecules. These crystal structures provide opportunities for NH···O=C hydrogen bonding of the types $A_d \cdots A_a$, $B_d \cdots B_a$, $A_d \cdots B_a$ and $B_d \cdots A_a$, where A and B are the component amide and barbiturate molecules respectively, and subscripts d and a refer to donor (NH) and acceptor (O=C) functions. We wish to determine whether any one of these is a preferred mode of hydrogen bonding, and whether there is any correlation between the $N \cdots O$ hydrogen-bonding distances and the mode of hydrogen bonding.

The results of nine crystal-structure determinations of barbiturate complexes, including those for the 1:1 barbital/urea complex which are presently reported, suggest that such relationships may exist. The barbiturate drugs appear to be more effective hydrogenbonding donors than acceptors.

Experimental

The crystal complex was obtained as transparent prisms,[†] m.p. 146–150°C, from a solution of barbital

(600 mg) and urea (300 mg) in an equal volume mixture of n-propanol and ethanol. The crystals are orthorhombic with space group $P2_12_12_1$ and lattice translations a = 10.302 (5), b = 10.181 (2) and c = 11.627 (3) Å. The crystal density $(1.320 \text{ g cm}^{-3})$, which was determined by flotation in a mixture of ethyl acetate and tribromomethane, agrees with the calculated value $(1.330 \text{ g cm}^{-3})$, assuming four molecules of each component in the unit cell. The lattice translations and Xray intensity data were measured on a four-circle automatic diffractometer using nickel-filtered Cu Ka radiation ($\lambda = 1.5418$ Å, $\mu = 9.05$ cm⁻¹). Integrated intensities were measured for 1144 symmetry-independent reflections in the range $\sin \theta/\lambda < 0.59 \text{ Å}^{-1}$ ($\theta < 65^{\circ}$) with the prism axis of the crystal (a) along the φ axis of the goniostat. The crystal dimensions were approximately $0.5 \times 0.3 \times 0.3$ mm. Reflections were scanned in the θ : 2θ mode at a rate of 2° min⁻¹ with 20 s background counts being taken at each of the scan limits. The 2θ scan width was based on 1.4° and was varied to allow for spectral dispersion. There were 44 reflections for which the integrated intensity, I, was less than 1.2 $\sigma(I)$ as calculated from the counting statistics. These reflections were arbitrarily assigned intensities of $\sigma(I)/2$. No corrections were applied for X-ray absorption or extinction.

The crystal structure was determined by direct methods as reported in detail by Gartland (1971). Atomic parameters (Table 1) were refined by a block-diagonal least-squares procedure. The function minimized was $\sum_{H} w_{H} \Delta_{H}^{2}$, where $\Delta_{H} = |F_{H}^{obs}| - |F_{H}^{eale}|$. The weights were $w_{H} = 1/\sigma^{2}(F_{H})$, with $\sigma^{2}(F_{H}) = 0.16-0.015$ $|F_{H}| + 0.0024 |F_{H}|^{2}$. The atomic scattering factors were those of Cromer & Waber (1965) for C, N, O and Stewart, Davidson & Simpson (1965) for H. All

^{*} Present address: The University of Alabama Medical Center, Birmingham, Alabama 35233, U.S.A.

[†] Sekiguchi, Himuro, Horikoshi, Tsukuda, Okamoto & Yotsuyanagi (1969) describe the crystallization of this complex from n-propanol.

hydrogen-atom positions were obtained from difference Fourier syntheses which were calculated after refinement of anisotropic thermal parameters had been introduced for the non-hydrogen atoms. Hydrogenatom positional parameters were subsequently in-

Fig. 1. Molecular structure of 5,5-diethylbarbituric acid (barbital).

cluded as variables in the refinement, but hydrogenatom temperature parameters were fixed with values the same as those of the atoms to which they are covalently bonded. Before the last two cycles of leastsquares refinement, 12 strong reflections for which $|\hat{F}^{calc}| > |F^{obs}|$ were given zero weight. The calculated and observed structure amplitudes are listed in Table 2. The final overall R^* index was 0.037. The r.m.s. displacements of atoms along the principal axes of their thermal ellipsoids are given in Table 1. In the barbital molecule, the largest atomic r.m.s. thermal displacements, excluding atoms of the ethyl groups, are approximately normal to the ring plane. Except for C(4)and C(5), which appear to have isotropic motion, the greatest deviations from this direction are about 20-25° for the carbonyl oxygen atoms. In the urea molecule, the largest thermal amplitudes are within 15° of being normal to the molecular plane, except for N(4), where the deviation from perpendicularity is 32°.

*
$$R = \sum_{H} |\mathcal{\Delta}_{H}| / \sum_{H} |F_{H}^{obs}|.$$

Table 1. Atomic parameters and their e.s.d.'s

Positional parameters are given as fractions of the unit-cell translations. Thermal parameters are given according to the expression: $T = \exp(-\sum_{i} \sum_{j} \beta_{i,j} h_i h_j)$. The quantity U_k is the r.m.s. displacement (Å), derived from the components $\beta_{i,j}$, along the direction of the *k*th principal axis of the thermal ellipsoid. The e.s.d.'s given in parentheses refer to the least significant figures in the parameter values. Non-hydrogen positional parameters and all thermal parameters are $\times 10^4$, hydrogen positional parameters are $\times 10^3$ and U_k parameters are $\times 10^2$.

(i) The b	arbital mole	cule										
	x	У	Z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	U_1	U_2	U_3
N(1)	5754 (2)	4037 (2)	4891 (2)	93 (2)	70 (2)	60 (1)	3 (2)	25 (1)	3 (1)	17	19	25
H(1)	530 (2)	397 (2)	549 (2)		~ /			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ /			
C(2)	6588 (2)	3014 (2)	4688 (2)	108 (2)	62 (2)	52 (2)	0 (2)	9 (2)	2 (2)	18	19	24
O(2)	6704 (2)	2096 (2)	5348 (2)	185 (3)	87 (2)	71 (1)	25 (2)	32 (2)	27 (1)	18	23	33
N(3)	7285 (2)	3059 (2)	3684 (2)	101 (2)	65 (2)	48 (1)	21 (2)	10 (1)	6 (1)	17	18	25
H(3)	782 (3)	242 (2)	355 (2)									
C(4)	7199 (2)	4030 (2)	2864 (2)	66 (2)	85 (2)	55 (2)	2 (2)	-2(1)	3 (2)	19	19	21
O(4)	7778 (2)	3896 (2)	1961 (1)	99 (2)	127 (2)	49 (1)	24 (2)	14 (1)	12 (1)	17	22	28
C(5)	6429 (2)	5255 (2)	3138 (2)	76 (2)	65 (2)	61 (2)	-1 (2)	1 (2)	8 (2)	18	20	21
C(6)	5626 (2)	5145 (2)	4232 (2)	86 (2)	71 (2)	71 (2)	1 (2)	13 (2)	-6(2)	19	20	24
O(6)	4891 (2)	6006 (2)	4520 (2)	143 (2)	95 (2)	115 (2)	48 (2)	47 (2)	2 (2)	17	25	34
C(7)	5524 (3)	5591 (2)	2125 (2)	101 (3)	81 (2)	79 (2)	8 (2)	-18 (2)	7 (2)	19	22	26
H(71)	518 (3)	639 (2)	233 (2)									
H(72)	614 (3)	575 (3)	145 (2)									
C(8)	4563 (3)	4504 (3)	1814 (3)	92 (3)	131 (3)	102 (2)	1 (3)	-16 (2)	-12 (3)	21	25	28
H(81)	410 (3)	429 (3)	254 (2)									
H(82)	506 (3)	368 (3)	154 (3)									
H(83)	392 (3)	484 (3)	122 (2)									
C(9)	7427 (3)	6382 (2)	3301 (2)	109 (3)	84 (2)	76 (2)	-24 (2)	-3 (2)	10 (2)	19	23	26
H(91)	689 (3)	722 (3)	335 (2)									
H(92)	789 (3)	654 (2)	254 (2)									
C(10)	8372 (3)	6199 (3)	4282 (2)	108 (3)	130 (3)	75 (2)	-22 (3)	-2(2)	-10 (2)	22	23	28
H(101)	786 (3)	605 (3)	500 (2)									
H(102)	894 (3)	539 (3)	419 (2)									
H(103)	902 (3)	696 (3)	423 (2)									
(ii) The u	rea molecule	e										
С	3894 (2)	4614 (2)	7596 (2)	67 (2)	92 (2)	60 (2)	-3(2)	1 (2)	-11(2)	19	19	23
0	4178 (2)	3786 (2)	6845 (1)	113 (2)	87 (2)	67 (1)	-31(2)	30 (1)	-23(1)	18	19	29
N(2)	4294 (2)	5858 (2)	7532 (2)	129 (2)	81 (2)	84 (2)	-3(2)	18 (2)	-16(2)	19	23	28
H(21)	470 (3)	596 (2)	698 (2)	. ,					~ /			
H(22)	425 (3)	644 (3)	816 (2)									
N(4)	3164 (2)	4292 (3)	8499 (2)	116 (2)	134 (3)	66 (2)	-13 (2)	23 (2)	-13(2)	19	25	28
H(41)	300 (3)	356 (3)	856 (2)		. /	. /	. /					
H(42)	295 (3)	488 (3)	904 (2)									

982

The molecular structures

(i) Barbital

The oxopyrimidine ring is almost planar, with C(5) and ethyl carbon atoms forming the spine of a hydrocarbon chain which extends nearly perpendicular to the ring. The slight twist conformation of the ring has already been shown and compared with similar conformations found in other barbiturate crystal structures (Craven, Cusatis, Gartland & Vizzini, 1973). Torsion angles C(8)-C(7) \rightarrow C(5)-C(9) and C(10)-C(9) \rightarrow C(5)-C(7) are 184.6 and 180.9° respectively, indicating that the extended hydrocarbon spine C(8)-C(7)-C(5)-C(9)-C(10) deviates slightly from twofold symmetry about the axis C(5) \cdots C(2). All carbon atoms of the hydrocarbon spine are coplanar to within 0.03 Å, and the best least-squares planes through these atoms and through atoms of the pyrimidine ring form a dihedral angle of 89.3°.

The bond lengths and angles (Table 3) are similar to those found in other barbiturates (Craven *et al.*, 1973). Within experimental error, the C=O and C-N bond lengths are symmetrical about the $C(5) \cdots C(2)$ molecular axis. There is thus no evidence of the small (0.01 Å) C-N and C=O bond-length differences which consistently appear in barbiturate crystal structures

Table 2. Observed and calculated structure amplitudes

Successive columns are l, $10|F_{H^{ors}}^{ens}|$, $10|F_{H^{ors}}^{enc}|$. Reflections marked (*) were given zero weight in the final refinement cycles.

F0055 CAL 2 478** 645 2 478** 645 2 478** 645 3 221 221 1 247** 641 3 221 221 1 247** 641 3 241 221 1 247** 641 3 245 346 3 346 398 3 345 346 3 345 346 3 345 346 3 345 346 3 345 346 3 345 346 3 345 346 3 345 346 3 345 346 3 345 346 3 345 346 3 345 346 3 345 346 3 345
POBS CAL 5 123 125 6 7 6 9 122 126 9 122 124 10 135 126 11 188 188 12 135 127 13 135 126 14 188 188 15 120 137 12 123 127 14 188 188 17 18 6 18 18 17 19 12 123 12 123 127 12 123 127 12 123 137 12 123 137 12 24 137 12 123 137 13 120 120 14 19 44 15 120 138 120 121
FOBS CAL 6085 CAL 7 68 9 80 9 80 9 80 9 80 9 80 9 80 9 80 9 80 9 80 9 80 9 80 9 80 10 100 11 10 12 11 14 14 15 160 16 70 17 155 10 12 11 14 12 105 13 12 14 14 15 105 16 21 17 100 18 14 14 14 15 15 16 21 17 <t< td=""></t<>
FOBS CAL 0 25 23 0 15 15 112 0 25 0 25 25 0 35 4 0 35 4 0 35 4 0 35 4 0 35 4 0 35 4 0 35 4 0 35 4 0 35 4 0 35 4 0 35 4 1112 10 7 25 20 25 20 20 20 20 20 20 20 20 20 20 20 20 21 20 20 21 20 20 20 20 20 20 20 20 20
F005 CAL 1 558 700 2 100 100 3 6 100 100 4 100 100 100 5 202 100 100 5 202 100 100 6 100 100 100 7 500 100 100 9 100 100 100 101 111 117 120 0 100 100 100 100 11 127 7 500 100 100 11 127 7 500 100 100 100 11 127 7 500 10
FOBS CAL 0 677 80 0 77 71 2 141 140 4 75 55 55 7 7 7 7 9 13 50 157 100 7 7 7 7 7 7 7 9 13 50 157 1107 127 131 50 12 1507 128 57 13 50 157 153 14 57 53 56 14 57 57 57 14 57 53 56 14 57 53 56 14 57 57 57 12 54 52 52 12 54 52 52 12 54 52 52 12 55 55<
FOBS CAL 1 140 4 48 1 140 4 140 1 120 120
F085 CAL 199 5 194 199 194 199 19 199 10 197 10 197 10 197 10 197 10 197 10 197 10 197 10 197 10 197 10 197 10 197 11 198 10 197 11 198 11 198 11 198 11 199 11 199 11 199 11 199 11 199 11 199 11 199 11 199 12 199 13 199 14 199 15 110 12 121
FOBS C4L 86 80 2 156 147 10 5 127 10 5 127 10 53 33 10 53 33 10 53 35 10 53 35 10 53 35 10 53 35 10 53 35 10 53 35 10 10 31 10 10 31 10 10 31 10 10 31 11 54 32 12 54 32 13 7 54 10 135 33 11 54 54 12 136 144 13 54 54 13 54 54 14 55 52 15<
FOBS CAL 5 36 136 137 6 136 137 120 6 136 137 120 6 136 137 120 6 136 137 120 6 136 137 120 6 136 137 120 6 136 137 120 7 136 120 120 10 7 136 120 7 136 120 136 80 120 136 130 10 7 136 130 130 130 130 130 120 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130
$ \begin{array}{c} FOBS & CAL \\ 0 & H^{\circ} & 6 & K^{\circ} & 2 \\ H^{\circ} & 6 & K^{\circ} & 2 \\ 0 & H^{\circ} & 6 & K^{\circ} & 2 \\ 0 & H^{\circ} & 6 & K^{\circ} & 2 \\ 0 & H^{\circ} & 6 & K^{\circ} & 2 \\ 0 & H^{\circ} & 6 & K^{\circ} & 2 \\ 0 & H^{\circ} & 6 & K^{\circ} & 2 \\ 0 & H^{\circ} & 1 & 2 \\ 0 & H^{\circ} & H^{\circ} & 1 \\ 0 & H^{\circ} & H^{\circ} & H^{\circ} & H^{\circ} \\ 0 & H^{\circ} & H^{\circ} & H^{\circ} & H^{\circ} \\ 0 & H^{\circ} & H^{\circ} & H^{\circ} & H^{\circ} \\ 0 & H^{\circ} & H^{\circ} & H^{\circ} & H^{\circ} \\ 0 & H^{\circ} & H^{\circ} & H^{\circ} & H^{\circ} \\ 0 & H^{\circ} & H^{\circ} & H^{\circ} & H^{\circ} \\ 0 & H^{\circ} & H^{\circ} & H^{\circ} & H^{\circ} \\ 0 & H^{\circ} & H^{\circ} & H^{\circ} & H^{\circ} \\ 0$
FOBS CAL 0 2 2 1 82 82 70 1 82 82 10 16 13 13 11 17 13 13 12 14 13 13 13 13 14 14 13 13 14 14 13 13 14 14 14 14 14 14 13 13 14 14 14 14 14 14 13 13 14 14 14 14 14 14 12 14 14 14 13 14 14 14 14 14 14 14 12 14 14 12 14 14 14 12 14 14 14 12 14 14

where the O(4) oxygen atom is hydrogen bonded but O(6) is not. In barbital/urea, the barbital O(4) and O(6) oxygen atoms are both at most weakly hydrogen

(ii) Urea

bonded.

The urea molecule is planar except possibly for the hydrogen atom H(22) which is 0.19 Å (6σ) from the plane. The bond lengths and angles (Table 3) are in good agreement with those found in the crystal structures of urea itself (Caron & Donohue, 1964; Pryor & Sanger, 1970) and the 1:1 glucose/urea complex (Snyder & Rosenstein, 1971). The bonds N(2)-H(22) and N(4)-H(42), which are *trans* to the urea oxygen atom, may be significantly longer (0.94 and 0.89 Å) than the other two urea N-H bonds (0.77 Å). The longer bonds involve the hydrogen atoms which are weakly hydrogen bonded to barbital oxygen atom O(2).

Table 3. Bond lengths and angles for the barbital and urea molecules

These values have not been corrected for the effects of anisotropic thermal motion. The e.s.d.'s are given in parentheses and refer to the least significant digits in the tabulated quantities.

(a) Bond lengths

(i) Barbital			
C(6) - N(1)	1·370 (3) Å	N(1) - H(1)	0·84 (2) Å
N(1) - C(2)	1.370 (3)	N(3) - H(3)	0.87 (2)
C(2) - N(3)	1.371 (3)	C(7) - H(71)	0.92 (2)
N(3) - C(4)	1.376 (3)	C(7) - H(72)	1.02(3)
C(6) - O(6)	1.205 (3)	C(9) - H(91)	1.02 (3)
C(2) - O(2)	1.215(3)	C(9) - H(92)	1.01 (2)
C(4) - O(4)	1.215 (3)	C(8) - H(81)	0.99(3)
C(5) - C(4)	1.511 (3)	C(8) - H(82)	1.04 (3)
C(5) - C(6)	1.522(3)	C(8)—H(83)	1.02 (3)
C(5) - C(7)	1.540 (3)	C(10) - H(101)	1.00(3)
C(5) - C(9)	1.552 (3)	C(10) - H(102)	1.02(3)
C(7) - C(8)	1.528 (4)	C(10) - H(103)	1.03(3)
C(9) - C(10)	1.511 (4)		
(ii) Urea			
C0	1.238 (3)	N(2) - H(21)	0.77 (2)
$C_{N(2)}$	1.344(3)	N(2) - H(22)	0.94(3)
$C_{N(4)}$	1.332 (3)	N(4) - H(41)	0.77(3)
	· · · · ·	N(4) - H(42)	0.89 (3)

(b) Bond angles

(I) Barbital	
N(1)-C(2)-O(2)	122·5 (2)°
N(1)-C(2)-N(3)	116.7 (2)
N(3)-C(2)-O(2)	120.8 (2)
C(2)-N(3)-C(4)	125.5 (2)
N(3)-C(4)-O(4)	119.1 (2)
N(3)-C(4)-C(5)	118.7 (2)
C(5)-C(4)-O(4)	122.1 (2)
C(4) - C(5) - C(6)	113.6 (2)
C(5)-C(6)-O(6)	121.3 (2)
C(5)-C(6)-N(1)	118.4 (2)
N(1)-C(6)-O(6)	120.2 (2)
C(6) - N(1) - C(2)	126.1 (2)
C(4) - C(5) - C(7)	109.8 (2)
C(4) - C(5) - C(9)	106.8 (2)
C(6) - C(5) - C(9)	108.2 (2)
C(6) - C(5) - C(7)	109.1 (2)

Table 3 (cont.)

C(7)—C(5)—C(9)	109·3 (2)°
C(5)—C(7)—C(8)	114·3 (2)
C(5)—C(9)—C(10)	115·4 (2)
$C(6) \longrightarrow N(1) \longrightarrow H(1)$	119 (1)
$C(2) \longrightarrow N(1) \longrightarrow H(1)$	115 (1)
$C(4) \longrightarrow N(3) \longrightarrow H(3)$	117 (2)
$C(2) \longrightarrow N(3) \longrightarrow H(3)$	117 (2)
H(71) - C(7) - H(72) H(81) - C(8) - H(82) H(81) - C(8) - H(83) H(82) - C(8) - H(83)	107 (2) 109 (2) 110 (2)
$H(92) \rightarrow C(9) \rightarrow H(92)$	113 (2)
$H(91) \rightarrow C(9) \rightarrow H(92)$	100 (2)
H(101) - C(10) - H(102)	106 (2)
H(101) - C(10) - H(103)	121 (2)
(ii) Urea	103 (2)
N(2)-CO	122·0 (2)°
$\begin{array}{c} O - C - N(4) \\ N(4) - C - N(2) \\ C - N(2) - H(21) \\ C - N(2) - H(22) \end{array}$	121·2 (2) 116·9 (2) 110 (2) 123 (2)
$\begin{array}{l} H(21) - N(2) - H(22) \\ C - N(4) - H(41) \\ C - N(4) - H(42) \\ H(41) - N(4) - H(42) \end{array}$	126 (3) 116 (2) 121 (2) 122 (3)

The hydrogen bonding

In the crystal structure of the 1:1 barbital/urea complex, the most important intermolecular interactions are the $NH \cdots O=C$ hydrogen bonds, which link the molecules to form a three-dimensional network (Fig. 2). The hydrogen-bonding environments of barbital and urea are shown separately in Figs. 3 and 4. Barbital molecules are hydrogen bonded exclusively to urea molecules and vice versa, i.e., there are only $B_a \cdots A_a$ and $A_d \cdots B_a$ hydrogen bonds. The two barbital NH groups both form hydrogen bonds with the urea oxygen atom with $N \cdots O$ distances of 2.78 and 2.80 Å. Only two of the four urea hydrogen atoms form hydrogen bonds, and both of these involve the same barbital oxygen atom, O(2). The N···O distances (2.95 and 3.16 Å) are significantly longer for the (NH)_{urea}... $O(2)_{barb}$ hydrogen bonds than for the $(NH)_{barb} \cdots O_{urea}$ hydrogen bonds, and in the former, the NH···O angles are more severely bent (Table 4). The NH \cdots O=

Table 4. Hydrogen-bonding distances and angles

Parameters for atoms not in the crystal chemical unit (as listed in Table 1) may be derived by operations specified by the subscripts *i*, *j*, where *i* is $(\frac{1}{2}+x,\frac{1}{2}-y,1-z)$ and *j* is $(1-x,\frac{1}{2}+y,\frac{3}{2}-z)$. The e.s.d.'s given in parentheses refer to the least significant figures in tabulated values.

$N(1) \cdots O$	2·803 (3) Å	N(1)···OC	129·9 (2)°
$H(1) \cdots O$	1.96 (2)	$N(1) - H(1) \cdots O$	177 (2)
$N(3) \cdots O_l$	2.777 (3)	$N(3) \cdots O_i - C_i$	116.6 (1)
$H(3) \cdots O_{i}$	1.92 (2)	$N(3) - H(3) \cdots O_l$	171 (2)
$N(2) \cdots O(2)_1$	2.953 (3)	$N(2) \cdots O(2)_{J} C(2)_{J}$	145.2 (2)
$H(22)\cdots O(2)_{j}$	2.10 (3)	$N(2) - H(22) \cdot \cdot \cdot O(2)_{J}$	150 (2)
$N(4) \cdots O(2)_{I}$	3.157 (3)	$N(4) \cdots O(2)_{I} - C(2)_{I}$	165.5 (2)
$H(42) \cdots O(2)_{j}$	2.39 (3)	$N(4) - H(42) \cdots O(2)_j$	144 (2)

Fig. 2. The crystal structure viewed down c. Circles of decreasing size represent oxygen, nitrogen and carbon atoms respectively. Nitrogen atoms are also cross-hatched. Hydrogen bonds are shown as thin lines.

C hydrogen bonds in which urea is donor $(A_d \cdots B_a)$ are thus considerably weaker than those in which barbiturate is donor $(B_d \cdots A_a)$. This conclusion is supported by a comparison with the structure of the 1:1 barbital/acetamide complex (Hsu & Craven, 1974a), which is isomorphous with the 1:1 barbital/urea complex. The CH₃ group of acetamide, which does not hydrogen bond, replaces one of the NH₂ groups of urea, with only minor perturbation of the crystal structure.

The existence of both strong and weak NH···O=C hydrogen bonds in the barbital/urea crystal structure may be the result of the overall packing requirements of more or less rigid molecules. However, the N···O distance* may also depend to some extent, on the electronic structures of the molecules which provide the particular NH donor group and carbonyl oxygen acceptor atom. A similar effect has been noted in the hydrogen bonding of ammonium ions with oxyanions in the crystal structures of inorganic salts. Baur & Khan (1970) find that the N···O distances in such NH···O hydrogen bonds increase with the coordination number of the oxygen acceptor atom.

Table 5 lists the N···O distances determined from crystal structures with NH···O=C hydrogen bonds in which a barbiturate provides either the NH donor, the carbonyl acceptor or both. A remarkable feature is the narrow range (2.82 to 2.92 Å) of the $B_d \cdots B_a$ hydrogen bond N···O distances in the crystal structures of the barbituric acids themselves [Table 5(a)]. The barbiturate ring (Fig. 1) has one carbonyl group C(2)-O(2)covalently bonded to two NH groups and two equivalent carbonyl groups C(4)-O(4) and C(6)-O(6)bonded to one NH group. The N···O distances for hydrogen bonds between barbiturate NH donors and these two kinds of barbiturate oxygen atoms have very similar distributions. The average values are 2.88 Å and 2.89 Å for distances involving O(4) and O(2), respectively. It should be noted that in many cases, the oxygen atoms accept a second hydrogen bond. The

Fig. 3. The environment of the barbital molecule viewed normal to the plane of the pyrimidine ring. Distances $N \cdots O$ are shown in Å.

Fig. 4. The environment of the urea molecule viewed normal to the plane of the molecule. Distances $N \cdots O$ are shown in Å.

^{*} The $N \cdots O$ distance gives a convenient, although not a definitive measure of hydrogen-bond strength. Nakamoto, Margoshes & Rundle (1955) have correlated NH infrared stretching frequencies with $N \cdots O$ distances in NH $\cdots O$ hydrogen bonds.

angles N-H···O range between 155 and 177°, with an average value of 170° . The N····O=C angles are grouped in the ranges 124–131° and 160–177°. There is no obvious correlation between either of these angles and the N···O distance.

The N···O distances for $B_d \cdots B_a$ hydrogen bonds in crystal structures of 1-methylbarbituric acids [Table 5(b)], barbiturate anions [Table 5(c)] and barbiturate molecular complexes [Table 5(d)] fall within the same range as found in Table 5(a) (2.82 to 2.92 Å) except for one slightly shorter distance of 2.78 Å in calcium barbital trihydrate, and three slightly longer distances of 2.93, 2.94 and 2.98 Å in 2:1 barbital/caffeine. Thus changes in barbiturate structure, electronic charge and molecular environment appear to have at most a small effect on the observed $N \cdots O$ distances in $NH \cdots O=C$ hydrogen bonds which involve barbiturates as both donor and acceptor. These hydrogen bonds may be considered to have a distance $N \cdots O$ of 2.9 Å subject to variations of ± 0.1 Å.*

* Table 5 lists hydrogen-bonding data for barbiturates with non-polar C(5) substituents. Voet & Rich (1970) list data for barbituric acid, its dihydrate and other non drug-active barbiturates with polar C(5) substituents. The N···O distances in these crystal structures range from 2·79 to 3·07 Å. The long N···O distances of 3·00 and 3·07 Å in perdeuterated violuric acid monohydrate have been explained (Craven & Takei, 1964) in terms of an unusual kind of intermolecular packing.

Table 5. Distances $N \cdots O$ in $NH \cdots O=C$ hydrogen bonds involving barbiturate derivatives with nonpolar C(5) substituents

Crystal structure		$(NH)_{barb} \cdots O(4) = C_{barb}$	$(NH)_{barb} \cdots O(2) = C_{barb}$	
(a) Barbituric acids				
5,5-Diethylbarbituric acid (barbital), form I (Craver 1969)	n, Vizzini & Rodrigues,	2·87 Å	2·89 Å	
Barbital, form II (Craven, Vizzini & Rodrigues, 19	2.87	_		
Barbital, form IV (Craven & Vizzini, 1971)		2.90, 2.87, 2.91, 2.91, 2.91, 2.92		
5-Ethyl-5-isoamylbarbituric acid (amobarbital), for	n I (Craven & Vizzini,	2.92, 2.91, 2.92, 2.03	- 2.92	
Amobarbital, form II (Craven & Vizzini, 1969)		2.91, 2.86	2.92, 2.88	
5-Ethyl-5-(3,3-dimethylbutyl)barbituric acid (Gartla	and & Craven, 1971)	2.82	2.88	
5-Ethyl-5-(1-methylbutenyl)barbituric acid (Craven	& Cusatis, 1969)	2.87, 2.92	-	
5-Ethyl-5-butylbarbituric acid (Bideau, 1971)	- 8- Anton d 1070)	2.86	2.8/	
5 Ethyl 5 (1 cyclohepten 1 yl)barbituric acid (Bideau	I & Artaud, 1970)	2.87	2.90	
1969)	u, Leroy & mousty,	2.89, 2.87	_	
5-Ethyl-5-phenylbarbituric acid, form III (Williams	, 1974)	2.89, 2.91	_	
5-Methyl-5-phenylbarbituric acid (Bravic, Housty &	& Bideau, 1968)	2.90	2.89	
5-Ethylbarbituric acid (Gatehouse & Craven, 1971)		2.85	2.89	
(b) 1-Methylbarbituric acids				
1-Methyl-5 5-diethylbarbituric acid (Wunderlich 19	973)	2.84		
1-Methyl-5-ethyl-5-(1-cyclohexen-1-yl)barbituric ac	id (Bideau, Leroy &	2		
Housty, 1970)		2.88	_	
1-Methyl-5-ethyl-5-phenylbarbituric acid (Bideau, I	Marly & Housty, 1969)	2.89	-	
(c) Barbiturate anions				
Sodium barbital (Berking & Craven, 1971)		2.84	_	
Calcium barbital trihydrate (Berking, 1972)		_	2.82, 2.78, 2.86, 2.85	
Guanidinium barbital dihydrate (McClure & Crave	en, 1973)	-	2.85	
(d) Barbiturate molecular complexes				
Crystal structure	$(NH)_{barb} \cdots (O=C)_{barb}$	$(NH)_{barb} \cdots (O=C)_{other}$	$(NH)_{other} \cdots (O=C)_{barb}$	
5-Ethyl-5-phenylbarbituric acid/8-bromo-9-ethyl-			• • • • • • •	
adenine (1:2) (Kim & Rich, 1968)	-	-	2·97, 3·19 A	
5-Isopropyl-5-bromoallylbarbituric acid/9-ethyl-			3.34 3.17	
5 5-Diethylbarbituric acid/9-ethyladenine (1:1)	-	-	5 54, 5 12	
(Voet, 1972)	-	_	3.22, 3.39	
5,5-Diethylbarbituric acid/caffeine (2:1) (Craven				
& Gartland, 1970)	2.98, 2.94, 2.93	-	-	
5,5-Diethylbarbituric acid/aminopyrine (1:1)	2.02	2.75		
(KIryu, 19/1) 5 5 Diethylbarbituric acid/urea (1:1) (This paper)	2.82	2.73	2.95 3.16	
5.5-Diethylbarbituric acid/acetamide) (1:1) (Hsu &	-	270,200	2,00,010	
Craven, $1974a$)	_	2.82, 2.82	2.95, 3.08	
5-Ethyl-5-isoamylbarbituric acid/salicylamide	_			
(1:1) (Hsu & Craven, 1974b)	2.92	-	3.00	
5,5-Diethylbarbituric acid/imidazole (1:1) (Hsu &	2.01		3.21	
Craven, 19/4 <i>C</i>)	2.91	=	5 41	

The observed range of $N \cdots O$ distances in all $NH \cdots O=C$ hydrogen bonds is considerably greater. The shortest reported distances which we could find were 2.55 Å in cysteylglycine sodium iodide (Dyer, 1951) and 2.62 Å in guanine hydrochloride monohydrate (Broomhead, 1951). Since these structure determinations were based only on zonal X-ray intensity data, a more reliable lower limit for $N \cdots O$ distances might be 2.67 Å which occurs in the urea/ parabanic acid complex (Colman & Medlin, 1970; Table 6). At the other extreme, there are $N \cdots O$ distances in NH····O=C interactions which are doubtfully described as hydrogen bonds. In the 1:1 complex of barbital with 9-ethyladenine (Voet, 1972), there is an $NH \cdots O = C$ interaction in which the $NH \cdots O$ atoms are collinear, with an $N \cdots O$ distance of 3.39 Å [Table] 3(d)]. However, the H···O distance (2.47 Å) is too long for hydrogen bonding according to Hamilton & Ibers (1968), who state that the $H \cdots O$ distance should be shorter than the van der Waals distance (2.6 Å) by at least 0.2 Å.

It is possible that additional $N \cdots O$ distances in $B_d \cdots B_a$ barbiturate hydrogen bonds will be found which will make their range conform more closely to the range of all $N \cdots O$ distances in $NH \cdots O = C$ hydrogen bonds. This would imply that there is little value in characterizing an $N \cdots O$ distance on the basis of the particular donor and acceptor groups which are involved. However, the available evidence is to the contrary. The five $N \cdots O$ distances in Table 5(d) for $B_d \cdots A_d$ hydrogen bonds are all between 2.75 and 2.82 Å which is at the short limit of the range for $B_d \cdots B_a$ hydrogen bonds. The 12 distances for $A_d \cdots B_a$ hydrogen bonds are between 2.95 and 3.39 Å which is at and beyond the long limit of the range for $B_d \cdots B_a$ hydrogen bonds. These data are consistent with the drug-active barbiturates being more effective as donors than as acceptors in $NH \cdots O=C$ hydrogen bonds.

The $N \cdots O$ distances for hydrogen bonds in which urea is both donor and acceptor have an average value of 2.98 Å and range between 2.84 and 3.13 Å (Table 6). In urea complexes, 21 hydrogen bonds have $N \cdots O$ distances for which urea is donor and other molecules are acceptor, but only eight of these involve a carbonyl oxygen acceptor atom. The latter have an average value of 3.07 Å and range from 2.91 to 3.24 Å. There are four $NH \cdots O=C$ hydrogen bonds in which urea is acceptor and all are short, ranging from 2.67to 2.80 Å. The available data for the NH···O=C hydrogen bonding of urea are fewer than for the barbiturates, but they are suggestive of a trend which is complementary to that of the barbiturates, namely for urea to be more effective as an acceptor than as a donor.

Thus, while barbital and urea both have hydrogenbonding donor and acceptor capability, their association in the 1:1 crystal complex may be considered to be essentially that of a hydrogen-bonding acid (barbital) with a hydrogen-bonding base (urea). The association of barbiturates with adenine derivatives in the complexes listed in Table 5(d) would appear to be of a similar nature, with barbital as the hydrogen-bonding acid and adenine as the hydrogen-bonding base. The strong hydrogen bonds in these complexes are of the type $NH \cdots N$ involving barbiturate as donor. The $N \cdots N$ distances in these and other $NH \cdots N$ barbiturate hydrogen bonds are discussed in our report of the crystal structure determinations of the 1:1 complexes of barbital with imidazole and with 2-aminopyridine (Hsu & Craven, 1974c,d).

This work was supported by the U. S. Public Health Service, National Institutes of Health, Grant No. NS-

Crystal structure	$(NH)_{urea} \cdots (O=C)_{urea}$	(NH) _{urea} ···O _{other}	$(NH)_{other} \cdots (O=C)_{urea}$
Urea (Pryor & Sanger, 1970)	2·98, 3·04 Å	_	-
Barbital/urea (1:1) (This paper)	- -	2·95*, 3·16* Å	2·78, 2·80 Å
Parabanic acid/urea (1:1) (Colman & Medlin, 1970)	3.01	3.07*, 3.20*, 3.24*	2.67
5-Nitro-2-furaldehyde-oxime/urea (1:1) (Mathew			
& Palenik, 1972)	2.84	2.94, 3.07	-
L-Cysteine ethyl ester hydrochloride/urea (1:1)			
(Haas, 1965)	2.88	3.06*	2.70
Hydrogen peroxide/urea (1:1) (Lu, Hughes &			
Giguère, 1941)	2.94	_	-
2,6-Lutidine/urea (1:1) (Lee & Wallwork, 1965)	3.05		
Estradiol/urea (1:1) (Duax, 1972)	2.85	3.03, 3.15, 3.04	-
Oxalic acid/urea (1:1) (Harkema, Bats, Weyenberg			
& Feil, 1972)	2.94	3.00*, 3.12, 2.91*, 2.94	-
Phosphoric acid/urea (1:1) [†] (Mootz & Albrand,			
1972; Kostansek & Busing, 1972)	3.10, 3.13	2.98, 3.16	-
Uronium nitrate (Worsham & Busing, 1969)	_	2·98, 2·97, 2·90, 2·92	-
Range	2.84-3.13	2.90-3.24	2.67-2.80

Table 6. Distances $N \cdots O$ in $NH \cdots O$ hydrogen bonds involving urea and the uronium ion

* This hydrogen bond involves a carbonyl oxygen atom as acceptor.

[†] This crystalline compound is intermediate in character between an adduct and a salt, because of the very strong more or less centered $O-H\cdots O$ hydrogen bond between the two components.

986

02763. We thank Dr R. Shiono for the computer programs which we used.

References

- BAUR, W. H. & KHAN, A. A. (1970). Acta Cryst. B26, 1584– 1596.
- BERKING, B. (1972). Acta Cryst. B28, 98-113.
- BERKING, B. & CRAVEN, B. M. (1971). Acta Cryst. B27, 1107-1115.
- BIDEAU, J. P. (1971). C. R. Acad. Sci. Paris, 272, 757-760.
- BIDEAU, J. P. & ARTAUD, M. (1970). C. R. Acad. Sci. Paris, 271, 806–809.
- BIDEAU, J. P., LEROY, F. & HOUSTY, J. (1969). C. R. Acad. Sci. Paris, 268, 1590-1592.
- BIDEAU, J. P., LEROY, F. & HOUSTY, J. (1970). C. R. Acad. Sci. Paris, 271, 500-502.
- BIDEAU, J. P., MARLY, L. & HOUSTY, J. (1969). C. R. Acad. Sci. Paris, 269, 549-551.
- BRAVIC, G., HOUSTY, J. & BIDEAU, J. P. (1968). C. R. Acad. Sci. Paris, 266, 969–971.
- BROOMHEAD, J. M. (1951). Acta Cryst. 4, 92-100.
- CARON, A. & DONOHUE, J. (1964). Acta Cryst. 17, 544-546.
- COLMAN, P. M. & MEDLIN, E. H. (1970). Acta Cryst. B26, 1547-1553.
- CRAVEN, B. M. & CUSATIS, C. (1969). Acta Cryst. B25, 2291-2298.
- CRAVEN, B. M., CUSATIS, C., GARTLAND, G. L. & VIZZINI, E. A. (1973). J. Mol. Struct. 16, 331–342.
- CRAVEN, B. M. & GARTLAND, G. L. (1970). J. Pharm. Sci. 59, 1666–1670.
- CRAVEN, B. M. & TAKEI, W. J. (1964). Acta Cryst. 17, 415-420.
- CRAVEN, B. M. & VIZZINI, E. A. (1969). Acta Cryst. B25, 1993-2009.
- CRAVEN, B. M. & VIZZINI, E. A. (1971). Acta Cryst. B27, 1917-1924.
- CRAVEN, B. M., VIZZINI, E. A. & RODRIGUES, M. M. (1969). Acta Cryst. B25, 1978–1993.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104-109.
- DUAX, W. L. (1972). Acta Cryst. B28, 1864-1871.
- DYER, H. B. (1951). Acta Cryst. 4, 42-50.
- GARTLAND, G. L. (1971). Ph. D. Dissertation, Univ. of Pittsburgh, Pittsburgh, Pa.
- GARTLAND, G. L. & CRAVEN, B. M. (1971). Acta Cryst. B27, 1909–1916.
- GATEHOUSE, B. M. & CRAVEN, B. M. (1971). Acta Cryst. B27, 1337-1344.
- HAAS, D. J. (1965). Acta Cryst. 19, 860-861.

- HAMILTON, W. C. & IBERS, J. A. (1968). Hydrogen Bonding in Solids. New York: Benjamin.
- HARKEMA, S., BATS, J. W., WEYENBERG, A. M. & FEIL, D. (1972). Acta Cryst. B28, 1646–1648.
- HSU, I-N. & CRAVEN, B. M. (1974a). Acta Cryst. B30, 974– 979.
- HSU, I-N. & CRAVEN, B. M. (1974b). Acta Cryst. B30, 843-846.
- HSU, I-N. & CRAVEN, B. M. (1974c). Acta Cryst. B30, 988– 993.
- HSU, I-N. & CRAVEN, B. M. (1974d) Acta Cryst. B30, 994– 997.
- KIM, S. H. & RICH, A. (1968). Proc. Natl. Acad. Sci. U.S. 60, 402–408.
- KIRYU, S. (1971). J. Pharm. Sci. 60, 699-703.
- KOSTANSEK, E. C. & BUSING, W. R. (1972). Acta Cryst. B28, 2454–2459.
- LEE, J. D. & WALLWORK, S. C. (1965). Acta Cryst. 19, 311-315.
- Lu, C. S., Hughes, W. & Giguère, P. A. (1941). J. Amer. Chem. Soc. 63, 1507–1513.
- McClure, R. J. & Craven, B. M. (1973). Acta Cryst. B29, 1860–1864.
- MATHEW, M. & PALENIK, G. J. (1972). J. Chem. Soc. Perkin II, pp. 1033–1036.
- MOOTZ, D. & ALBRAND, K.-R. (1972). Acta Cryst. B28, 2459-2463.
- NAKAMOTO, K., MARGOSHES, M. & RUNDLE, R. E. (1955). J. Amer. Chem. Soc. 77, 6480–6486.
- PRYOR, A. W. & SANGER, P. L. (1970). Acta Cryst. A 26, 543-558.
- SEKIGUCHI, K., HIMURO, I., HORIKOSHI, I., TSUKADA, T., OKAMOTO, T. & YOTSUYANAGI, T. (1969). *Chem. Pharm. Bull. (Japan)*, **17**, 191–199.
- SNYDER, R. L. & ROSENSTEIN, R. D. (1971). Acta Cryst. B27, 1969–1975.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- VOET, D. (1972). J. Amer. Chem. Soc. 94, 8213-8222.
- VOET, D. & RICH, A. (1970). In *Progress in Nucleic Acid Research and Molecular Biology*, Vol. 10, pp. 183–264. Edited by J. N. DAVIDSON and W. E. COHN. New York and London: Academic Press.
- VOET, D. & RICH, A. (1972). J. Amer. Chem. Soc. 94, 5888-5891.
- WILLIAMS, P. P. (1974). Acta Cryst. B30, 12-17.
- WORSHAM, J. E. & BUSING, W. R. (1969). Acta Cryst. B25, 572–578.
- WUNDERLICH, H. (1973). Acta Cryst. B29, 168-173.